
AFRL-HE-BR-SR-2006-0009

0 THE INVERSE SOURCE
PROBLEM FOR

MAXWELL'S EQUATIONS
FINAL REPORT

Richard A. Albanese

Human Effectiveness Directorate
Information Operations and Special Programs Division

Brooks City-Base, TX 78235

Peter B. Monk

Department of Mathematical Sciences
University of Delaware

501 Ewing Hall
Newark, DE 19716

October 2006

Final Report for July 2004 - September 2005

Air Force Research Laboratory
Approved for Public Release; Distribution unlimited. Human Effectiveness Directorate

Information Operations and
Special Programs Division
2486 Gillingham Dr.
Brooks City-Base, TX 78235

20061226009



NOTICES

This report is published in the interest of scientific and technical information exchange and
does not constitute approval or disapproval of its ideas or findings.

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government-related procurement does not in any way obligate the
US Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data, does not license the holder or any other person or corporation,
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

The Office of Public Affairs has reviewed this paper, and it is releasable to the National
Technical Information Service, where it will be available to the general public, including
foreign nationals.

AFRL-HE-BR-SR-2006-0009 has been reviewed and is approved for publication in
accordance with assigned distribution statement.

//SIGNED//
RICHARD A. ALBANESE
Project manager

//SIGNED//
JAMES W. RICKMAN, MAJ, USAF
Chief, Special Projects Branch



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for resiewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 2.Dates Covered

10-19-2006 FINAL July 2004-September 2005

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

THE INVERSE SOURCE PROBLEM FOR MAXWELL'S EQUATIONS FA8650-04-1-6535
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Richard A. Albanese
Peter B. Monk 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7184X03B
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

NUMBER

Department of Mathematical Sciences
University of Delaware

501 Ewing Hall
Newark DE 19716

9. SONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Materiel Command
Air Force Research Laboratory AFRL/HEX
Human Effectiveness Directorate

Information Operations & Special 11. SPONSOR/MONITOR'S REPORT

Programs Division (AFRL/HEX) NUMBER(S)
2486 Gillingham Dr AFRL-HE-BR-SR-2006-0009
Brooks City-Base TX 78234

12. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
Final report delivered by the AFOSR contractor (Monk) to the government (AFRL/HEX members contributing) based upon EEG data
supplied by Dr. James Kroger, New Mexico State University.
10-26-06: Cleared for public release; PA-06-382

14. ABSTRACT

The inverse source problem for Maxwell's equations is considered. We show that the problem of finding a
volume current density from surface measurements does not have a unique solution, and we characterize the non-
uniqueness. We also show that if further information is available the inverse source problem may have a unique
solution. The method is useful for the quantitative determination of interior brain currents from surface
electroencephalographic measurements. The application is to prosthesis control.
15. SUBJECT TERMS
INVERSE, MAXWELL, ELECTROENCEPHALOGRAM, PROSTHESIS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

U OF ABSTRACT OF PAGES RICHARD A. ALBANESE

a. REPORT b. ABSTRACT c. THIS PAGE SAR 19b. TELEPHONE NUMBER (include area

U U U 14 code)

Standard Form 298 (Rev. 8-98)



THIS PAGE INTENTIONALLY LEFT BLANK



THE INVERSE SOURCE PROBLEM FOR MAXWELL'S EQUATIONS

R. ALBANESE* AND P.B. MONKt

Abstract. The inverse source problem for Maxwell's equations is considered. We show that the problem of finding a
volume current density from surface measurements does not have a unique solution, and characterize the non-uniqueness. We
also show that if further a priori information is available, the inverse source problem may have a unique solution (in particular
for surface currents or dipole sources).

1. Introduction. The goal of this paper is to investigate the inverse source problem for the general

Maxwell system. This problem arises in medical applications where measurements are taken of the electric
and magnetic surface currents on the surface of the human head, and it is desired to infer from these currents
the source currents in the brain that produced the measured fields. It is hoped that such measurements could

be used to diagnose abnormalities in the brain and also to allow the control of prosthetic limbs.
From the point of view of mathematical modeling, we shall first make the simplifying assumption that

the measurements can be made on a surface containing the entire head. Later we shall discuss how the

theory developed in this ideal case might be extended to the more realistic problem where measurements are
made on a portion of the skull. Thus we assume that there is a bounded smooth domain £2 C 1R3 (connected

with connected complement) such that the known electromagnetic parameters E, a and y (all assumed real)
have the following properties:

1. In ]R3 \ T (the air) the parameters have the values E = c0 > 0 and P = 0o > 0 where 60 and po are
the permitivitty and permeability of free space respectively. In addition the conductivity u = 0.

2. In Q2 (the head) there are constants Emin and Emax such that

0 < fmin • E(X) ! Emax for all x E £.

In addition there are a constant Umax such that

0 < or(x) • umox, for all x E £.

In view of the biological application it is also reasonable to assume that U = /to in all £ and we shall
make this assumption in the rest of the paper.

3. The coefficients c and a are assumed to be piecewise C1 functions and any surfaces of discontinuity
are assumed to be smooth.

The latter assumption is made so that we can apply the unique continuation results of [21] (in [19] it

is commented that the continuation property extends to piecewise C1 functions under even more general
conditions on the interface between regions where the coefficients are smooth).

Given a current density J supported in £, the resulting electromagnetic field described by the electric
field E and magnetic field H satisfies the following Maxwell system where w > 0 is the frequency of the

time harmonic field:

(1.1) -imwE + oE - V x H = -J in R 3 ,

(1.2) -iwAH + V x E = 0 in 1R3.

In order to uniquely determine the fields, we must also impose the Silver-Miiller radiation condition at

infinity:

(1.3) lim (Hx -IxIE)=0

uniformly in ýi = x/Ixl. Under suitable conditions on the smoothness of the source J (for example J E
L 2 (1R3) having compact support), the forward problem of finding E and H for a known current source J is
well posed (see for example [19]).

*AFRL/HEX, Brooks City-Base, San Antonio TX 78235-5107. e-mail: richard.albanesefbrooks.af.mil
tDepartment of Mathematical Sciences, University of Delaware, Newark DE 19716, USA. e-mail: monk@math.udel.edu.

Research supported in part by a grant from AFOSR.



Having defined the above notation, we can now discuss the inverse source problem. Let F denote the
surface of Q. Let n denote the unit outward normal to F = afQ. For the inverse source problem we assume
that c, a and p are known and in addition that the surface electric current n. x E and the surface magnetic
current n x H are known on the entire surface F. From this data we would like to find the corresponding
unknown source current density J. As we shall see this problem is severely ill-posed.

The inverse source problem has been exhaustively studied in the literature both from the point of view of
applied biomedical engineering and also as a mathematical problem (see for example [3, 22, 15, 7, 14, 9, 6, 121

where we have emphasized mathematical references of relevance to this paper). It is well-known that volume
sources cannot be uniquely determined from surface measurements due to the existence of non-radiating
sources [3, 18, 17, 8]. One goal of this paper is to extend the results of [3] and characterize the non-radiating
sources when the background media is non-constant as is found in the head. This is done using weak solutions
and variational methods.

With the exception of the work of Ammari, Bao and Flemming [1] and He and Romanov [13] most
theoretical work on biological applications has focused on the static (or quasi-static) case since it is clear
that the frequency of the radiation is very low (perhaps 100Hz). Even in [1] the numerical scheme suggested
is based on a static model. IHowever, since the goal of the inverse source problem is to monitor dynamic
neuronal events (an action potential has a rise time on the order of 0.5 milliseconds [23]) it may be that the
displacement current is not negligible. This has already been pointed out in studies of source problems related
to monitoring neurons in the arm [16]. In particular there are two important dimensionless parameters that
must be considered when assessing whether the displacement current may be neglected [11] namely

S= fw_1taL and/3 = Vt/-uwL

where L is a representative length for the conductor. Of course neglecting the displacement current results
in an eddy current model - the first step to a static model

If we choose w = 100Hz then, using the Gabriel database [10], we find that for grey matter the relative
permitivity is Cr = 3.9 x 106 and a = 0.089Si- 1 . Taking (o = 8.85 x 10-1 2Fm- 1, /•o = 47r x 10-Hm1in- and
taking as a, representative length L - 0.01m (roughly the radius of the head) we obtain

S= 3.3 x 10-5 and 3 = 6.6 x 10-6.

While both these terms are small compared to unity, they are of the same order of magnitude and thus we
cannot a priori neglect the displacement current (this is also the conclusion of the computational studies
in [161). It therefore seems prudent to consider the full Maxwell system. The remainder of the paper
is devoted to uniqueness questions for the inverse source problem for the Maxwell system. Our work is
strongly motivated by [12] in which uniqueness questions are examined for the corresponding static problem.

The plan of this paper is as follows. In the next section (Section 2) we address the question of uniqueness
for the inverse problem assuming that the unknown sources are distributed throughout the domain Q. We
show that, such sources cannot be determined from the given data (without further a priori information) and
characterize the non-uniqueness. This tells us the limits on the inverse source problem in the sense that,
even with perfect data, the volume current density cannot be reconstructed. If the source currents are a
priori known to have smaller support than the entire domain Q, it is sometimes possible to prove that the
data uniquely determines the source. We consider two cases found in applications. In Section 3 we suppose
that it is known a priori that the source current is given by a delta function that is supported on the surface
of a smooth subdomain in Q. In the case of a surface current we show that the current density is uniquely
determined by the data. In the second case, in Section 4, we consider the case when the source current is
due to finitely many dipole sources. In this case we prove that the data uniquely determines the number,
position and strength of the dipoles. Finally, in Section 5, we show how the variational characterization can
be extended to allow for measurements only on a portion of the boundary F and draw some conclusions in
Section 6.

The uniqueness theory in this paper does not address the stability of the inverse problem to data
perturbations. We also do not address the question of what algorithm could be used in each of the three
cases. However the variational characterization of the current source that we shall derive can be used as
part of an inversion scheme.
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In general vector quantities are denoted by boldface type (e.g. E = (El, E 2 , E 3 )T as already used above).
Much of our theory makes use of the standard energy space for solutions of Maxwell's equations

H(curl; Q) = {u G L2 ( () I V x u E L2 (Q)}.

2. Non uniqueness of volume currents. Our goal in this section is to derive a variational equation
relating the unknown source J to the data on F. This derivation is motivated by the work of Ammari, Bao
and Fleming [1] who derived a similar expression in their study of methods for identifying point sources. We

then use this variational equation to study the uniqueness question when J is a distributed source in Q.
Suppose J E L 2 ( () has support in Q and that 6, o E Lc°(R3) satisfy the assumptions noted in the

previous section. Then we can reformulate (1.1)-(1.3) on •Q alone using a suitable Dirichlet-to-Neumann
(DtN) map T on F. In order to define the map T we need the trace space H- 1 / 2 (Div; F) defined by

H-1 / 2 (Div;F) = {u E H-1/ 2 (q) u n = 0 on r and Vr -u E H-1/2(F)}

where Vr. is the surface divergence. Note that since we assumed that the surfaces in this problem are
smooth, classical definitions of the surface gradient, curl and divergence may be used [4].

Using this space, the map T can be defined as follows. For A E H-i/ 2 (Div; F) we define TA = n x v
where (u, v) E Hi,,(curl; 1R3 \ ?j)2 satisfy

-iwcou - V x v = 0 in R 3 \Q,
-iwpov + V x u = 0 in 1R3 \?,

n x u = A on F,

together with the Silver-Miiller radiation condition (1.3). It follows from the solvability of the exterior
scattering problem in Hloc(curl; 1 3 \ ?) that T : H- 1/ 2 (Div; F) - H- 1/ 2 (Div; F). For an introduction to
vector trace spaces and the properties of T see [20, 19, 2].

Later, we shall also need to use the adjoint operator T* : H- 1 /2 (Curl; F) -+ H- 1/ 2 (Curl; F) where

H-1/2 (Curl; F) = {u E H 1/2 (F) I un = 0 on F and Vrp X U E H-1/2(F)}

and where Vr x u is the surface curl of u. Of course H-1 / 2 (Div; F) and H- 1 /2 (Curl; F) are dual spaces so

that T and T* are related by

IjTA. - jdA = IjA .T-idA VAEH H 1 /2 (Div,;-y) and 77 E H-1/2 (Curl; IF).

The map T* is also related to a boundary value problem. Given 77 E H- 1/ 2 (Curl; F) define 4 and V to
satisfy the exterior scattering problem

-iwco - V x ip = 0 in R \3 ,

-iwyb + V x 4 = 0 in R \3,

(n x 4) x n = ,q on F,
lim (0 x x + jx]o) = 0.

This is just an exterior problem for Maxwell's equations (recognizing that the boundary condition on F may
be rewritten as 4 x n = r7x n) where the radiation condition has the opposite sign to that in (1.3). Standard
techniques show that this problem has a unique solution for any q E H- 1 /2 (Curl; F) (see for example [19]).

Using integration by parts and the equations for the fields (u, v) and (4, 1P) in a ball BR of radius R
containing Q we have (recalling that n is the outward normal to F and hence inwards to BR) that

-jT(nxu).iidA=J Vxv.-)-v. -Vx4dV-j nxv.4 dA
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= J -iwcu'-.+Vxu4'-dV-f nxv .;dA

= 1w-iW.u-V;+u .Vx 4dV-fnxu.'-dA+ j nxu.-4-nxv.V¢dA

=-_ nxu.VdA+ ±j nxu.4,-nxv.*bdA.

But we may write

1< n x u .-V- n xv .- dA = f (v x n - u) +u( x n +)dA.

Using the fact that Jul = O(1/lxJ), 101 = O(1/1x!), Iv x n - uI = o(1/Ixl 2) and 4' x n + 4] = O(1/Ixl 2)
for IxJ = R large (see [4]), we see that the integral on B9BR vanishes in the limit R - oo and we have shown
that T*r?= (n x 4) x n on F.

Using the DtN map T, we can reformulate (1.l)-(1.3) as the problem of finding (E, H) E H(curl; Q) x
H(curl; Q) such that

(2.1) -iwcE + aE- V x H = -J in 2,

(2.2) -iwljH + V x E = 0 in fQ,

(2.3) H x n = T(E x n) on F.

It, is now convenient to derive a vector wave equation for E alone by using (2.2) to write H = 1/(iwpi)V x E
and eliminating H from (2.1) to obtain

(2.4) V x p-iV x E - (wu2 4- iow)E = iwJ in Q.

Multiplying by the complex conjugate of a smooth test vector function ý and integrating by parts (using the
expression for E just derived) we obtain the variational equation

(2.5) foj1_-V x E. V x (w2C + iu)E.dV + Ijiwn x H.- dAj iwJ.- dV.

Replacing the magnetic surface current using the DtN map we obtain the problem of finding E E H(curl; 92)
such that

(2.6) 1JP1V xE -V x& (W 2 E +iow)E - dV +jIiwT(n xE) - dA jiWJ - dV

for all ý E H(curl; Q2). This variational formulation can then be used to prove that, for a given J G L2(A

there exists a unique electromagnetic field (E, H) satisfying (2.6) [19].
We now return to the inverse problem and derive an identity relating the source current J to the data.

The approach is closely connected to the characterization of non-radiating sources in [17] but we now allow a
more general scattering problem for which the Maxwell operator is not self adjoint. Using (2.5) and recalling
that ý is assumed to be a smooth vector function, we integrate by parts one more time to obtain the indentity

iWji J dV = J E (V X p-iV x - (W2
( - iacw)ý) dV

+r n x E. p- V x ý + iwn x H. -dA.

Now we choose ý C H(curl, Q) to be such that

(2.7) j A1 V X V X 4'- (W2 6 - iaw) - dV = 0

4



for all smooth vector functions ?p of compact support in Q. Note in particular that this implies, in the sense
of distributions, that ý is just a weak solution of the adjoint Maxwell system

V x x - (w 2E - io.W)ý = 0 in Q.

The fact that ý c L 2 (Q) then implies that V x /L- 1 V x C L2 (Q) and hence that n x [--'v x H- 1
/

2 (Div; F)
is well defined. Making this choice of ý we see that (2.7) becomes

(2.8) iw J .- dV = (n x E. p- 1 V x-• + iwn x H.-) dA.

for all ý G H(curl; Q) satisfying (2.7).
Suppose that we have an exact knowledge of n x E and n x H on r (and of 6 and U in 92). Then

equation (2.8) provides a link between the known data and the unknown source J. Let us define the set of
solutions of the adjoint problem to be

H-i(Q) = {u E H(curl; Q1) [ u satisfies (2.7)}.

Then we define H(Q2) to be the closure of 7-H(Q) in the L2 (Q2) norm. Using H(Q) we can write the L 2-

orthogonal decomposition

L2 (Q) = H(q) G H(Q)'.

We note that H(fl)± is an infinite dimensional subspace of L 2 (t2) as the following lemma shows.
LEMMA 2.1. Suppose X e (CQ°(Q)) 3 . Then if

0 = V X 1--V X X - (w
2 E - iwao)X

we have 4 E H(Q2)'.
Remark: An interesting question is whether the above lemma characterizes all of H(Q)'.
Proof. Suppose u G 7-H(fQ) then, integrating by parts,

j u 4)dV u. (V x/U-IV x X - (w2C - iarw)X) dV

= I-L 1 V x u-V x - (w2 C + iaw)u dV = 0,

using (2.7). By a density argument this holds for all functions in H(Q). 0
Recall that J E L2 (Q). From Lemma 2.1 we see that H(Q) is a proper subspace of L2 (f2) and using

(2.8) we see that only the component of J in H(Q) can be determined from the data by using equation (2.8).
It is possible that some other equation could be derived to determine the component of J in H(Q7)± from
the data, but the following theorem rules this out.

THEOREM 2.2. Suppose J E L2 (Q). Then J = JH + JH' where JH E H(Q) and JH± G H(Q)'. The
inverse source problem uniquely determines JH via equation (2.8). The component JH' does not produce
surface currents on r and hence cannot be identified.

Remark: The functions in H(fQ)± are termed non radiating sources [3]. Computing the component of

the source in H(fQ) corresponds to computing a "minumum energy" solution [18].
Proof. Given the discussion preceding this theorem, the only part of the statement of the theorem that

needs to be proved is that JH' produces no surface currents on F. To simplify notation, suppose now that

J E H(Q)'. Then from (2.8) we have that

In x E .- 1-1V x Z + iwn x H. -dA = 0

for all ý E 'H(Q•). Using the Dirichlet to Neumann map T

jn x E p- V x-Z + iwT(n x E) .- dA = 0

5



so using the adjoint operator T* : H- 1/ 2 (Curl; F) -, H-'/2 (Curl; F),

(2.9) J n x E. (y-WV x ý - iwT*(T)) dA = 0

where •I = (n x ý) x n on F. We now choose ý C H(curl; Q) to satisfy (2.7) together with the boundary
condition

S-I (V × •x + iwT*(ýT) = r7 on F

where 77 - H'-1/2(Curl; F). More precisely, E E H(curl;, Q) satisfies the variational problem

jn P -V X ý . V X - (W2 E iwco). - dV + IJQYi - iwT*(ýT)) - x n dA = 0

for all 0 G H(curl; Q2). We have already shown at the start of this section that T* is characterized by solving
an exterior boundary value problcm for Maxwell's equations using the radiation condition with a sign change.
Thus the above variational problem is equivalent to solving the following strong form of the boundary value
problem of finding • E H1o,(curl; R 3 ) such that

(2.10) V X V-lV X W - (c - iaw)ý = 0 in R 3 \ F,

(2.11) [AlT = on F,

(2.12) [ lV X := -ý on F,

(2.13) P-l(V × ) x + iwjxl• • 0 as IxI - 00,

where, for a smooth function u the jump ýUlT on F is given, for x £ F, by

PULT(x) = lirm ((n(x) x u(x - hn(x))) x n(x) - (n(x) x u(x + hn(x))) x n(x)))h-0*

where we recall that n is the unit outward normal to Q.
Standard analysis of uniqueness and existence for the Maxwell system can now be applied to the above

problem to show the existence of a unique solution ý to (2.10)-(2.13) for any 77 E H-1/ 2(Curl;Q). Hence
(2.9) shows that

I n x E . ýIdA = 0 for all 77 E H-/ 2 (Curl; Q)

so n x E = 0 (and hence H x n = T(E x n) = 0 on F). Thus a current in H(Q)' produces no measurable
signal. 0

The preceding result shows that only a certain component of a volume current J can be determined
directly without further a, priori information. Furthermore since the measurable component is a solution of
the homogeneous adjoint Maxwell solution, it's support will be all of Q (unless there is no measurable field!).
Hence the support of the source also cannot be determined without further a priori information.

3. Uniqueness of surface currents. Next we consider the inverse source problem in a case where extra
a priori information is assumed to be available. In particular, we assume that J is a surface current supported
on a known smooth surface E enclosing a domain B located interior to Q. Note that this assumption is often
made in the MEG literature (see for example [22]) and Y corresponds to the surface of the brain.

As we shall see we need to additionally assume that the surface current J is tangent to E and more
precisely that J E H- 1/ 2 (Div; E). In this case it is no longer true that H E H(curl; Q). Instead the
analogue of equations (2.1)-(2.3) is to seek E E H(curl; Q) and H C L 2(Q) such that H1B E H(curl; B),
Hlnl\- E H(curl; Q \ B) and

(3.1) -iwc E+E-V x H=0 in Q\B and B,

(3.2) -iwpH + V x E = 0 in Q,

(3.3) H x n = T(E x n) on F,

(3.4) [H x n} = -J on E,

6



where n is the outward normal to E and the jump [H x n]. is defined by [H x n] = (Hn\-f - HIB) I x n.
The above equations can be reduced to a variational problem on Q using the Dirichlet-to-Neumann map

T. First we can eliminate H on fQ \ B and B respectively. Then multiplying the resulting electric field

equations by a smooth test vector and integrating over the respective domains, we see that E E H(curl; Q)
satisfies

(3.5) inA-1V x E. V x -(W26+ iW)E. dV + IjiwT(n x E). dA iwJ.•dV

for all ý E H(curl; Q). Existence of a unique solution to this problem follows in the standard way [19].
Now let us turn to the inverse problem. Let ý E H(curl; Q) denote a solution of the adjoint Maxwell

problem (i.e. satisfying (2.7)). Using (3.5) in place of (2.6) and the same arguments as in the previous
section we see that the integral equation (2.8) characterizing J is modified to become

(3.6) iw J .dA = Ijn x E -- 'V x ý + iwn x H -dA.

where now J C H- 1/ 2 (Div; E) and ý E H(curl; Q) denotes any solution of the adjoint Maxwell problem (i.e.
satisfying (2.7)). We are now in a position to state our uniqueness theorem in this case.

THEOREM 3.1. Suppose J G H-1/ 2 (Div; E) and E and H satisfy (3.1)-(3.4) (i.e. J is a distribution
supported on a smooth surface E in Q). Assume also that E is a given surface with E = 8B and B is
a domain in Q with connected complement. Suppose in addition that the electromagnetic properties of the
medium in B are constant. Let EO denote the support of J on E. Then, assuming w is not a Maxwell
eigenvalue for the adjoint Maxwell equation in B, E0 and J[r 0 are uniquely determined by the surface data
E x n and H x n on F.

Remarks: 1) This theorem rules out non-radiating sources on smooth surfaces satisfying the conditions
of the theorem. We note that for the Helmholtz equation Devaney [8] has also considered the problem of
non-radiating surface sources. His examples show that for more general surfaces than considered here (in
particular an infinite plane), uniqueness is lost since non-radiating sources can be constructed.

2) If a > 0 in B the eigenvalue assumption may be dropped.
Proof. By virtue of the assumptions on f and a, the electric field can be uniquely continued from r to

0 \ B. Thus, from the point of view of uniqueness, it suffices to apply (3.6) on cB. Now suppose that there
are two currents J 1 and J 2 in H- 1/ 2(Div; E) giving rise to the same electromagnetic fields on aB. Then

(3.7) B (J- J 2 ) ' ýdA =

for all ý satisfying the adjoint equation (2.7) (which has constant coefficients in B).
Let ý be a Herglotz wave function using plane waves that are solutions of the adjoint Maxwell system

on B. It is shown in [5] that any weak solution of the constant coefficient homogeneous Maxwell system
can be approximated in the H(curl; Q) norm by a Herglotz wave function for the adjoint system. Given
a function in H-"/2 (Curl; E) we may use it as tangential boundary data for the adjoint Maxwell problem.
Using the fact that w is not a Maxwell eigenvalue for the adjoint Maxwell problem, a unique solution of this
boundary value problem exists. Approximating the resulting solution of the adjoint problem by a Herglotz
wave function in H(curl; Q2), and taking the tangential trace of the Herglotz wave function shows that the
tangential trace of the Herglotz wave functions are dense in H-1/ 2 (Curl; E) (see also [19]). Hence (3.7) shows
that J 1 - J2 = 0 and so J is uniquely determined by equation (3.6). We have thus proved the theorem. 0

This theorem may give some support for the observation that rather good source reconstructions can be
obtained from MEG data assuming the source is on the brain surface.

4. Uniqueness for dipole sources. The final case we shall consider is where the current source is

known a priori to be the superposition of a finite number of dipole sources. For the brain these dipoles might
represent active channels in the nerve membrane. Thus we have in mind that a finite number dipole sources

with unknown position and polarization are to be detected in the interior of Q (in particular the sources can
not lie on F). This is not a restriction in practice since, when detecting sources in the brain, measurements
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are taken on the skin surface, and sources are located in the brain within the skull. In this case the source

takes the form
N

J(x) = j 6z, (X)
j=1

for some N < oc where $pj 1 0 and zj E f for all j (6, is the delta function located at z). We assume also
that the source points z1,. .. ZN are distinct.

In order to establish the unique determination of J in this case, we need an additional technical restriction
on the medium near the source points. We assume that each source point is located in a region of constant
electromagnetic properties. In particular, for each j, there is a ball centered at zj such that E and /p are
constant in the ball. This assumption is used first to justify the variational formulation of the inverse problem
(and later in our uniqueness result). Since a weak solution of the Maxwell system is a strong solution away
from boundaries and discontinuities of the coefficients, we know that the solution ý E H(curl; Q) of (2.7)
is an analytic function in the neighborhood of each source point and hence (2.8) still holds. In the case of
dipole sources (2.8) gives

N

(4.1) Epi •(zj) = n x E -V X - + iwn x H .dA.
j=1

This equation, which appears already in [1], will form the basis of our study of uniqueness results for dipole
sources where we generalize the results of Ammari, Bao and Flemming [1] to more than one dipole. For one
dipole in free space this theorem was also proved in [13] and [3].

We can now state our uniqueness result.
THEOREM 4.1. Under the aforementioned restrictions on the electromagnetic parameters E and u and the

source points, the source problem. has a unique solution in that the number, position and non-zero polarization
of the point sources are uniquely determined.

Proof. The first part of the proof is an extension of the proof in [11 for a single dipole. We start by
showing that, the number and position of the dipoles is uniquely determined. Suppose that there are two
sets of dipole positions S, = {Z 1 ,' " ., ZyN} and S 2 = {,", 1 MI giving rise to the same measurements on
F. By assumption the points in S 1 (respectively S 2 ) arc mutually distinct. If S 1 5 S2 there must be a point
in one set not in the other. We can assume z1 E S1 and z1 V S 2 . By unique continuation, the electric field
can be continued from the boundary F to a neighborhood of z 1 . Let E1 denote the electric field continued
to the domain Q \ S 1 and E 2 denote the field continued to the domain 2 \ S2. Then E 1 = E 2 in a punctured
ball around z 1 .

Now suppose that x approaches z 1 . The field E 2 is a continuous function of x since z, is assumed to
lie in a ball where ( and a are constant, and z1 is not a source point for E 2 . Thus IE2 (X)J -- IE2 (Zl)l
as x -4 z 1 . Considering now E, there are two possibilities: either p, = 0 and the source point should be
dropped from S since we have assume the the polarization at each source point is non-zero, or p, 5 0. In
the latter case E1 (x) is unbounded as x - zl since zi is a source point for this field. This contradicts the
previously noted equality of the fields and so S C S 2. Reversing the roles of S1 and S2 shows that S = Si2

We now must show that the polarization at each source point is uniquely determined. We know already
that the position of the non-trivial sources is uniquely determined, so we know that we can continue the
electric field to a punctured ball about each source point. In particular we may continue the field to the
surface of a ball centered at a source point containing media with constant electromagnetic parameters c
and o. Thus we are faced with the problem of knowing n x E and n x H on the surface of a ball containing
a single source point at it's center, and having constant electromagnetic properties inside. If B denotes the
ball and OB denotes its boundary, the variational characterization of the source field (see (2.8) becomes,
after moving the source point to the origin,

(4.2) p .(0) = J (n xEE t-V x -iwn x H dV

where is an H(curl; B) solution of V x V x -k 2 = 0 in B and k2 
= (W2qEt - iopW). We now know

that ? =rexp(ikx • d) with d e R' such that IdJ = 1 and d. r7 = 0 is a solution of the above adjoint



Maxwell system. Using this solution in (4.2) shows that p. l7 is determined for any q and hence p is uniquely
determined. This completes the proof. 0

5. Measurements on a portion of F. In real applications the measurements of n x E and n x H are
only made on a subset of the boundary. We now assume that n x E and n x H are known on rm C F where
Fm is a "measurement" domain that may be multiply connected. In this case a variational characterization
of J can still be derived. Let ý G H10, (curl; R 3 \ Fm) be any solution of the adjoint Maxwell system in
1R3 \ Fm together with the adjoint Silver-Miiller radiation condition so that, in a weak sense,

(5.1) V x Y-iV x E - (w 26 - iwj)m = 0 in R3 \Fm

(5.2) lim ((V X ý) x x + iwp0oxIý) = 0.

We then have the following lemma giving the extension of (2.8) to this case.
LEMMA 5.1. Suppose n x E and n x H are known on a subdomain Fm of F. Then provided ý satisfies

the adjoint problem (5.1)-(5.2) on R3 \ Fm then

(5.3) iW jJ. dV=j (n x E -'V X IrT+iwn x H'T) dA

where the previously introduced tangential jump [IT is extended to a smooth function on Q and R 3 \ in
the obvious way so that for x E F

ýUýT(h) = l ((n(x) x u(x - hn(x))) x n(x) - (n(x) x u(x + hn(x))) x n(x)))

where we recall that n is the unit outward normal to Q. Analogues of equations (3.6) and (4.1) also hold
replacing the right hand side of the respective equations by the above right hand side.

Proof. The proof proceeds similarly to the derivation of (2.8). Let BR denote a ball of radius R with
R chosen sufficiently large such that n C BR. Let ý denote a smooth test function on BR \ rm. Then
multiplying (2.4) by ý and integrating by parts twice we arrive at

iwj J.-dV=B E.(VX1-l7X - (w2-iwo),) dV

+ j (n x E. rp-lV x ,ýT + iwn x H . f]T) dA

+ (n x E .p-V x + iwn x H .) dA
aBR

where we have used the fact that J = 0 outside Q. If we now choose • to satisfy (5.1) the volume integral
term vanishes. The integral on oBR may be rewritten as follows:

f (n x E y'-V x ý+iwn x H'dA= (E.-C(po '(17x)x n +iwtoý))

BR JBR
-iW(H x n - E) . )dA.

Using the fact (see [4]) that

EI=O(i-[) and I(Vx×) xn+iwyo0l=O (IX)

for large xj shows that as R -* oo the first term in the integral on the right hand side above vanishes.
Similar estimates show that the second term vanishes. This proves the desired equality. 0

It is now possible to use the characterization of J in this theorem to study the uniqueness of solutions of
the inverse source problem with measurements not over the entire surface r. In addition the formula could
be used as part of an inversion scheme.

Obviously volume currents cannot be reconstructed using (5.3). However the proofs of uniqueness in

Sections 3 and 4 can be proved provided Fm is such that the unique continuation property holds.
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6. Conclusion. We have examined the uniqueness problem for the inverse source problem in the case
where the background medium is non-homogeneous. We have shown that, without additional a priori
information, the data does not uniquely determine a volume source, nor does it even determine the support
of a volume source (these results are well known for a constant background). However if the source is a priori
known to have special features, in particular if it is a surface current on a known surface, or a a current due
to a collection of dipoles, we show that the data does uniquely determine the current density. It would be
useful to remove the many technical restrictions regarding the electromagnetic properties assumed in this
work.

The variational characterization of the current distribution in each case can also be used as part of inver-
sion scheme. We hope to test this approach in the future, in particular focusing on the case of measurements
on a portion of the boundary.

Acknolwedgement. PM would like to acknowledge many helpful discussions with David Colton during
the preparation of this paper. The research of PM was partially supported by a grant from AFOSR.
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